Fabrication of field-effect transistors from hexathiapentacene single-crystal nanowires

Nano Lett. 2007 Mar;7(3):668-75. doi: 10.1021/nl0627036. Epub 2007 Feb 9.

Abstract

This paper describes a simple, solution-phase route to the synthesis of bulk quantities of hexathiapentacene (HTP) single-crystal nanowires. These nanowires have also been successfully incorporated as the semiconducting material in field-effect transistors (FETs). For devices based on single nanowires, the carrier mobilities and current on/off ratios could be as high as 0.27 cm2/Vs and >103, respectively. For transistors fabricated from a network of nanowires, the mobilities and current on/off ratios could reach 0.057 cm2/Vs and >104, respectively. We have further demonstrated the use of nanowire networks in fabricating transistors on mechanically flexible substrates. Preliminary results show that these devices could withstand mechanical strain and still remain functional. The results from this study demonstrate the potential of utilizing solution-dispersible, nanostructured organic materials for use in low-cost, flexible electronic applications.