MEMS shear stress sensors for cardiovascular diagnostics

Conf Proc IEEE Eng Med Biol Soc. 2004:2004:2420-3. doi: 10.1109/IEMBS.2004.1403700.

Abstract

Coronary artery disease is the leading cause of morbidity and mortality in the industrialized nations. Both biochemical and biomechanical stimuli modulate the pathogenesis of coronary artery diseases. Shear stress acting on the lumen of blood vessels intimately modulates the biological activities of vascular endothelial cells (ECs). We hereby develop microelectro mechanical system (MEMS)-based sensors at the dimension comparable to a single EC to monitor realtime shear stress in fluidic channel. Our goal is to fabricate sensors for ex vivo or in vivo shear stress measurement at Reynolds number commonly encountered in human circulation. The MEMS sensors were designed based on the previously described heat transfer principles. The polysilicon was doped with phosphorous to render the sensing element a high resistivity at 2.5 KOmega. The development of backside wire bonding enabled the application for the vascular geometry. The small dimension (80x2 mum) and the gain amplitude at 71 KHz offered an entry point to measure shear stress with high spatial and temporal resolution.