Nutritional metabonomics: applications and perspectives

J Proteome Res. 2007 Feb;6(2):513-25. doi: 10.1021/pr060522z.

Abstract

Nowadays, nutrition focuses on improving health of individuals through diet. Current nutritional research aims at health promotion, disease prevention, and performance improvement. Modern analytical platforms allow the simultaneous measurement of multiple metabolites providing new insights in the understanding of the functionalities of cells and whole organisms. Metabonomics, "the quantitative measurement of the dynamic multiparametric metabolic response of living systems to pathophysiological stimuli or genetic modifications", provides a systems approach to understanding global metabolic regulations of organisms. This concept has arisen from various applications of NMR and MS spectroscopies to study the multicomponent metabolic composition of biological fluids, cells, and tissues. The generated metabolic profiles are processed by multivariate statistics to maximize the recovery of information to be correlated with well-determined stimuli such as dietary intervention or with any phenotypic data or diet habits. Metabonomics is thus uniquely suited to assess metabolic responses to deficiencies or excesses of nutrients and bioactive components. Furthermore, metabonomics is used to characterize the metabolic phenotype of individuals integrating genetic polymorphism, metabolic interactions with commensal and symbiotic partners such as gut microflora, as well as environmental and behavioral factors including dietary preferences. This paper reports several experimental key aspects in nutritional metabonomics, reviews its applications employing targeted and holistic approach analysis for the study of the metabolic responses following dietary interventions. It also reports the assessment of intra- and inter-individual variability in animal and human populations. The potentialities of nutritional metabonomics for the discovery of new biomarkers and the characterization of metabolic phenotypes are discussed in a context of their possible utilizations for personalized nutrition to provide health maintenance at the individual level.

Publication types

  • Review

MeSH terms

  • Diet
  • Humans
  • Intestines / microbiology
  • Metabolism*
  • Nutrition Assessment*
  • Proteins / metabolism*
  • Research / trends
  • Xenobiotics / metabolism

Substances

  • Proteins
  • Xenobiotics