Donor-acceptor biradicals as ground state analogues of photoinduced charge separated states

J Am Chem Soc. 2007 Feb 21;129(7):1937-43. doi: 10.1021/ja065384t. Epub 2007 Jan 31.

Abstract

A Valence Bond Configuration Interaction (VBCI) model is used to relate the intraligand magnetic exchange interaction (J) to the electronic coupling matrix element (HAB) in Tp(Cum,MeZn)(SQNN), a compound that possesses a Donor-Acceptor (D-A) SemiQuinone-NitronylNitroxide (SQNN) biradical ligand. Within this framework, an SQ --> NN charge transfer state mixes with the ground state and stabilizes the spin triplet (S = 1). This charge-transfer transition is observed spectroscopically and probed using resonance Raman spectroscopy. In addition, the temperature-dependent electronic absorption spectrum of the Ni(II) complex, Tp(Cum,MeNi)(SQNN), has been studied. Exchange coupling between the S = 1 Ni(II) ion and S = 1 SQNN provides a mechanism for observing the formally spin-forbidden, ligand-based 3GC --> 1CTC transition. This provides a means of determining U, the mean GC --> CTC energy, and a one-center exchange integral, K(0). The experimental determination of J, U, and K(0) permits facile calculation of HAB, and we show that this methodology can be extended to determine the electronic coupling matrix element in related SQ-Bridge-NN molecules. As magnetic susceptibility measurements are easily acquired in the solid state, H(AB) may be effectively determined for single molecules in a known geometry, provided a crystal structure exists for the biradical complex. Thus, SQ-Bridge-NN molecules possess considerable potential for probing both geometric and electronic structure contributions to the magnitude of the electronic coupling matrix element associated with a given bridge fragment.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Benzoquinones / chemistry*
  • Models, Molecular
  • Nitrogen Oxides / chemistry*
  • Photochemistry
  • Spectroscopy, Near-Infrared
  • Spectrum Analysis, Raman
  • Thermodynamics

Substances

  • Benzoquinones
  • Nitrogen Oxides
  • semiquinone radicals
  • nitroxyl