Synthesis and electron transfer studies of ruthenium-terpyridine-based dyads attached to nanostructured TiO2

Inorg Chem. 2007 Feb 5;46(3):638-51. doi: 10.1021/ic060858a.

Abstract

A series of bis(terpyridine)RuII complexes have been prepared, where one of the terpyridines is functionalized in the 4'-position by a phosphonic or carboxylic acid group for attachment to TiO2. The other is functionalized, also in the 4'-position, by a potential electron donor. In complexes 1a, 3a, and 4a,b, this donor is tyrosine or hydrogen-bonded tyrosine, while in 2a it is carotenoic amide. The synthesis and photophysical properties of the complexes are discussed. On irradiation with visible light, the formation of a long-lived charge-separated state was anticipated, via primary electron ejection into the TiO2, followed by secondary electron transfer from the donor to the photogenerated RuIII. However, such a charge-separated state could be observed with certainty only with complex 2a. To explain the result, quantum chemical calculations were performed on the different types of complexes.