Rotational dynamics in a crystalline molecular gyroscope by variable-temperature 13C NMR, 2H NMR, X-ray diffraction, and force field calculations

J Am Chem Soc. 2007 Jan 31;129(4):839-45. doi: 10.1021/ja064325c.

Abstract

A combination of solid-state 13C CPMAS NMR, 2H NMR, X-ray-determined anisotropic displacement parameters (ADPs), and molecular mechanics calculations were used to analyze the rotational dynamics of 1,4-bis[3,3,3-tris(m-methoxyphenyl)propynyl]benzene (3A), a structure that emulates a gyroscope with a p-phenylene group acting as a rotator and two m-methoxy-substituted trityl groups acting as a stator. The line shape analysis of VT 13C CPMAS and broad-band 2H NMR data were in remarkable agreement with each other, with rotational barriers of 11.3 and 11.5 kcal/mol, respectively. The barriers obtained by analysis of ADPs obtained by single-crystal X-ray diffraction at 100 and 200 K, assuming a sinusoidal potential, were 10.3 and 10.1 kcal, respectively. A similar analysis of an X-ray structure solved from data acquired at 300 K suggested a barrier of only 8.0 kcal/mol. Finally, a rotational potential calculated with a finite cluster model using molecular mechanics revealed a symmetric but nonsinusoidal potential that accounts relatively well for the X-ray-derived values and the NMR experimental results. It is speculated that the discrepancy between the barriers derived from low and high-temperature X-ray data may be due to an increase in anharmonicity, or to disorder, at the higher temperature values.