Unique chromosome behavior and genetic control in Brassica x Orychophragmus wide hybrids: a review

Plant Cell Rep. 2007 Jun;26(6):701-10. doi: 10.1007/s00299-006-0290-7. Epub 2007 Jan 13.

Abstract

Researchers recognized early that chromosome behavior, as other morphological characters, is under genetic control and gave some cytogenetical examples such as the homoeologous chromosome pairing in wheat. In the intergeneric sexual hybrids between cultivated Brassica species and another crucifer Orychophragmus violaceus, the phenomenon of parental genome separation was found under genetic control during mitosis and meiosis. The cytogenetics of these hybrids was species-specific for Brassica parents. The different chromosome behavior of hybrids with three Brassica diploids (B. rapa, B. nigra and B. oleracea) might contribute to the different cytology of hybrids with three tetraploids (B. napus, B. juncea and B. carinata). The finding that genome-specific retention or loss of chromosomes in hybrids of O. violaceus with B. carinata and synthetic Brassica hexaploids (2n=54, AABBCC) is likely related to nucleolar dominance gives new insight into the molecular mechanisms regarding the cytology in these hybrids. It is proposed that the preferential expressions of genes for centromeric proteins from one parent (such as the well presented centromeric histone H3) are related with chromosome stability in wide hybrids and nucleolar dominance is beneficial to the production of centromere-specific proteins of the rRNAs-donor parent and to the stability of its chromosomes.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Brassica / genetics*
  • Chromosomes, Plant*
  • Hybridization, Genetic