Polymorphic ventricular tachycardia and abnormal Ca2+ handling in very-long-chain acyl-CoA dehydrogenase null mice

Am J Physiol Heart Circ Physiol. 2007 May;292(5):H2202-11. doi: 10.1152/ajpheart.00382.2006. Epub 2007 Jan 5.

Abstract

Patients with mutations in the mitochondrial very-long-chain acyl-CoA dehydrogenase (VLCAD) gene are at risk for cardiomyopathy, myocardial dysfunction, ventricular tachycardia (VT), and sudden cardiac death. The mechanism is not known. Here we report a novel mechanism of VT in mice lacking VLCAD (VLCAD(-/-)). These mice exhibited polymorphic VT and increased incidence of VT after isoproterenol infusion. Polymorphic VT was induced in 10 out of 12 VLCAD(-/-) mice (83%) when isoproterenol was used. One out of 10 VLCAD(-/-) mice with polymorphic VT had VT with the typical bidirectional morphology. At the molecular level, VLCAD(-/-) cardiomyocytes showed increased levels of cardiac ryanodine receptor 2, phospholamban, and calsequestrin with increased [(3)H]ryanodine binding in heart microsomes. At the single cardiomyocyte level, VLCAD(-/-) cardiomyocytes showed significant increase in diastolic indo 1 and fura 2 fluorescence, with increased Ca(2+) transient amplitude. These changes were associated with altered Ca(2+) dynamics, to include: faster sarcomere contraction, larger time derivative of the upstroke, and shorter time-to-minimum sarcomere length compared with VLCAD(+/+) control cells. The L-type Ca(2+) current characteristics were not different under voltage-clamp conditions in the two VLCAD genotypes. Sarcoplasmic reticulum Ca(2+) load measured as normalized integrated Na(+)/Ca(2+) exchange current after rapid caffeine application was increased by 48% in VLCAD(-/-) cells. We conclude that intracellular Ca(2+) handling represents a possible molecular mechanism of arrhythmias in mice and perhaps in VLCAD-deficient humans.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Retracted Publication

MeSH terms

  • Acyl-CoA Dehydrogenase, Long-Chain / deficiency*
  • Acyl-CoA Dehydrogenase, Long-Chain / genetics
  • Animals
  • Calcium / metabolism*
  • Calcium Signaling*
  • Female
  • Heart Ventricles / physiopathology*
  • Male
  • Mice
  • Mice, Knockout
  • Tachycardia, Ventricular / physiopathology*

Substances

  • Acyl-CoA Dehydrogenase, Long-Chain
  • Calcium