Synergistic activity of hydrophilic modification in antibiotic polymers

Biomacromolecules. 2007 Jan;8(1):19-23. doi: 10.1021/bm0605513.

Abstract

Quaternized poly(vinylpyridine) is known to kill up to 99% of drug-resistant gram-positive and -negative bacteria but shows minimal biocompatibility. We report enhanced bactericidal activity of vinylpyridine through copolymerization with hydroxyethyl methacrylate and poly(ethylene gycol) methyl ether methacrylate. Copolymers with increasing comonomer content were synthesized by radical polymerization and quaternized with hexylbromide. We assessed the effects of the changes in polymer composition on the bactericidal activity of the surface activity using a bioluminescent pathogenic strain of Escherichia coli (O157:H7). By recording the photoluminescence emitted by these bacteria in contact with the copolymers, it was shown that several of the copolymers possess better antibacterial efficiency than quaternized poly(vinylpyridine). Results indicate that several of the copolymers synthesized possess antibacterial activity approximately 20 times greater than the pure quaternized poly(vinylpyridine) homopolymer, while only containing 1 wt % hexylated pyridinium. This behavior is explained by the increased surface wettability of the copolymers containing lesser amounts of poly(vinylpyridine), as bactericidal behavior correlates to the hydrophilicity of the system as measured by contact angles. A hydrophilicity based design-paradigm can significantly improve both the efficacy and the biocompatibility of antibacterial materials.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology*
  • Biocompatible Materials / chemistry
  • Escherichia coli / metabolism
  • Luminescence
  • Macromolecular Substances / chemistry
  • Microbial Sensitivity Tests
  • Models, Chemical
  • Photochemistry / methods
  • Polymers / chemistry*
  • Pyridines / chemistry
  • Solubility
  • Time Factors

Substances

  • Anti-Bacterial Agents
  • Biocompatible Materials
  • Macromolecular Substances
  • Polymers
  • Pyridines