Signal transduction pathway of TonB-dependent transporters

Proc Natl Acad Sci U S A. 2007 Jan 9;104(2):513-8. doi: 10.1073/pnas.0609887104. Epub 2006 Dec 29.

Abstract

Transcription of the ferric citrate import system is regulated by ferric citrate binding to the outer membrane transporter FecA. A signal indicating transporter occupancy is relayed across the outer membrane to energy-transducing and regulatory proteins embedded in the cytoplasmic membrane. Because transcriptional activation is not coupled to ferric citrate import, an allosteric mechanism underlies this complex signaling mechanism. Using evolution-based statistical analysis we have identified a sparse but structurally connected network of residues that links distant functional sites in FecA. Functional analyses of these positions confirm their involvement in the mechanism that regulates transcriptional activation in response to ferric citrate binding at the cell surface. This mechanism appears to be conserved and provides the structural basis for the allosteric signaling of TonB-dependent transporters.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Proteins / chemistry*
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Biological Transport, Active
  • Biophysical Phenomena
  • Biophysics
  • Escherichia coli / genetics
  • Escherichia coli / metabolism
  • Escherichia coli Proteins / chemistry*
  • Escherichia coli Proteins / genetics
  • Escherichia coli Proteins / metabolism*
  • Membrane Proteins / chemistry*
  • Membrane Proteins / genetics
  • Membrane Proteins / metabolism*
  • Models, Molecular
  • Mutagenesis, Site-Directed
  • Nuclear Magnetic Resonance, Biomolecular
  • Protein Conformation
  • Protein Structure, Tertiary
  • Pseudomonas putida / genetics
  • Pseudomonas putida / metabolism
  • Receptors, Cell Surface / chemistry*
  • Receptors, Cell Surface / genetics
  • Receptors, Cell Surface / metabolism*
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism
  • Signal Transduction

Substances

  • Bacterial Proteins
  • Escherichia coli Proteins
  • FecA protein, E coli
  • Membrane Proteins
  • Receptors, Cell Surface
  • Recombinant Proteins
  • pseudobactin receptor, Pseudomonas
  • tonB protein, Bacteria

Associated data

  • PDB/1ZZV
  • PDB/2A02