Self-assembled networks highly responsive to hydrocarbons

Langmuir. 2007 Jan 2;23(1):105-11. doi: 10.1021/la061612l.

Abstract

Rheological studies were performed with aqueous salt solutions of anionic surfactant potassium oleate and its mixtures with hydrophobically modified polyacrylamide. Semidilute solutions of the surfactant in the presence of salt (KCl) demonstrate viscoelastic properties due to the formation of a transient network of entangled wormlike micelles. These systems are highly responsive to hydrocarbons: the addition of n-heptane or n-dodecane reduces the viscosity of solutions by up to 4 to 5 orders of magnitude, thus inducing the transition of a gellike system to a fluid one. It is the transformation of cylindrical surfactant micelles into spherical ones upon absorption of hydrocarbon that disrupts the network. The addition of a small amount (0.5 wt %) of associating polymer leads to up to a 5000-fold increase in the zero-shear viscosity and enhances the susceptibility to hydrocarbons. SANS data show that independently of the presence of polymer the radius of wormlike micelles is roughly equal to the length of a surfactant molecule, whereas the radius of spheres formed upon the absorption of hydrocarbon is 2-2.5-fold higher. A possible structure of the spherical micelles is discussed.