Size-dependent spectroscopic properties of conjugated polymer nanoparticles

J Phys Chem B. 2006 Dec 28;110(51):25568-72. doi: 10.1021/jp065990a.

Abstract

This paper is focused on how the spectroscopic properties of conjugated polymers evolve in the size range between single polymer chains and the bulk material. The measurements used single-particle spectroscopy techniques and include both static and dynamic measurements. The main observation of this work is that the spectroscopic properties of MEH-PPV evolve rapidly as a function of nanoparticle size and achieve bulk-like properties for nanoparticles greater than 10 nm in size. Nanoparticles were assembled by a reprecipitation technique and characterized by fluorescence emission spectroscopy. The physical origin of the size-dependent spectroscopic properties is assigned to the distance dependence of four main processes: electronic energy transfer between blue and red sites, triplet-triplet annihilation, singlet exciton quenching by triplets, and singlet exciton quenching by hole polarons.