Studies of biominerals relevant to the search for life on Mars

Orig Life Evol Biosph. 2006 Dec;36(5-6):621-2. doi: 10.1007/s11084-006-9045-2.

Abstract

The evidence of the water erosion on Mars is particularly interesting since present climatic conditions are such that liquid water cannot exist at the surface. But, if water was present on the planet in the past, there may have been life, too. Since the discovery of carbonates on Mars also may have very important implications on the possibility that life developed there, we are studying minerals that can have biotic or abiotic origin: calcite (CaCO(3)) and aragonite, a metastable state of calcite.We have analysed biomineral aragonite, in the form of recent sea shells, as well as crystals of mineral aragonite. Infrared spectroscopy in the 2-25 mum wavelength range reveals that, after thermal processing, the biotic samples have a different spectral behaviour from the abiotic ones. As a result, it is possible to distinguish abiotic mineral aragonite from aragonite of recent biological origin.Obviously, if life existed in the past on the Red Planet, we could expect to find "ancient" biotic carbonates, which should therefore be investigated, in order to search for a way of discriminating them from abiotic minerals. For this reason, at the beginning we have considered samples of crushed fossil shells of aragonite composition. Afterwards, in order to take into account that fossilization processes almost always produce a transformation of metastable form (aragonite) into more stable form (calcite), we also studied samples of mineral calcite and different types of fossils completely transformed into calcite. All these biotic fossil samples show the same spectral behaviour as the fresh biotic material after thermal annealing at 485 degrees C. Instead, the calcite behaves like abiotic aragonite.Furthermore, it is known that seashells and other biominerals are formed through an intimate association of inorganic materials with organic macromolecules. The macromolecules control the nucleation, structure, morphology, crystal orientation and spatial confinement of the inorganic phase: this differentiates biominerals from minerals. Analysing the aragonite or calcite fossils with a Scanning Electron Microscope, we found that the fossilization process did not modify the structure of the biominerals which maintain their microscopic characteristics. Looking at the morphology of fossil biominerals, it is evident that the crystals are arranged in complex architectures compared with the compact structure of the mineral crystals. In conclusion, the properties and structure of the biominerals are different from those of the minerals. The rapid increase of the crystalline structure developed under biotic conditions makes these minerals less resistant to thermal treatments, compared with samples of abiotic origin. This result holds both for recent shells as well as all fossil samples. The spectroscopic behaviour of all analysed calcium carbonates of biotic origin is different from that of the abiotic one. Therefore, the infrared spectroscopy is a valid technique to discern the origin of the samples and a powerful tool for analysing in-situ and "sample-return" Mars missions specimens. Also Optical and Scanning Electron Microscopy can be useful to support this type of studies.

MeSH terms

  • Calcium Carbonate / analysis
  • Calcium Carbonate / chemistry
  • Durapatite / analysis
  • Durapatite / chemistry
  • Exobiology / methods*
  • Extraterrestrial Environment / chemistry
  • Mars*
  • Origin of Life
  • Spectrophotometry, Infrared

Substances

  • Durapatite
  • Calcium Carbonate