Shape-controlled electrodeposition of gold nanostructures

J Phys Chem B. 2006 Nov 23;110(46):23478-81. doi: 10.1021/jp065292q.

Abstract

A one-step, nontemplated, low-cost electrochemical method for the growth of gold nanostructures with different shapes is reported here. It is the first time that nanopyramidal, nanorod-like, and spherical gold nanostructures were fabricated on polycrystalline gold substrates through electrochemical overpotential deposition (OPD) by easily manipulating the deposited potentials and concentrations of HAuCl4. X-ray diffraction and electrochemical analyses revealed that the pyramidal structures are more extensively dominated by (111) facets in comparison with the other nanostructures. The nanopyramids, which have anisotropic structures, exhibited broad extinction over the visible region, most likely due to plasmon resonance. Oxygen reduction activity of a gold electrode with the pyramidal structures was lower than those of the electrodes with the other nanostructures since the activity at the gold (111) surface is lower than that at the (100) and (110) surfaces.