Calculations of nuclear quadrupole coupling in noble gas-noble metal fluorides: interplay of relativistic and electron correlation effects

J Chem Phys. 2006 Nov 7;125(17):174315. doi: 10.1063/1.2363371.

Abstract

The nuclear quadrupole coupling constants (NQCCs) of noble gas and noble metal nuclei in the recently found noble gas-noble metal fluorides (NgMF, where Ng=Ar,Kr,Xe and M=Cu,Ag,Au) are obtained theoretically by high-level ab initio calculations, where both relativistic and electron correlation effects are included, and compared to experimental results. Fully relativistic four-component Dirac-Hartree-Fock (DHF) calculations are carried out at the basis set limit for electric field gradient that couples with the electric quadrupole moment of the nucleus, and uncorrelated relativistic effects are extracted by comparing DHF results to nonrelativistic (NR) HF calculations. Electron correlation effects are investigated both at fully relativistic second-order Moller-Plesset (DMP2) and at NR MP2 levels of theory, as well as at the NR coupled-cluster singles and doubles with perturbational triples [CCSD(T)] level. The validity of the approximation where relativistic effects, on the one hand, and nonrelativistically obtained correlation effects, on the other hand, are evaluated separately and assumed to be additive, is investigated by comparison with the DMP2 results. Inclusion of relativistic effects is shown to be necessary for obtaining the correct NQCC trends as the nucleus of interest and/or its neighbors become heavier. Electron correlation treatment is needed for approaching quantitative agreement with the experimental NQCCs. The assumption of additive electron correlation and relativistic effects, corresponding to the NR correlation treatment added on top of relativistic DHF data, gives qualitatively correct noble gas NQCCs. For noble metal NQCCs, correlation treatment at the relativistic level of theory is mandatory for reaching agreement with experimental results. Current work also confirms the experimental trends of NQCCs, which have been taken as an indication of nearly covalent interaction between noble gas and noble metal in the heaviest present systems, especially in XeAuF.