Design of high frequency piezoelectric resonators utilizing laterally propagating fast modes in thin aluminum nitride (AlN) films

Ultrasonics. 2006 Dec;45(1-4):208-12. doi: 10.1016/j.ultras.2006.09.008. Epub 2006 Nov 2.

Abstract

Highly c-oriented aluminum nitride (AlN) thin piezoelectric films have been grown by pulsed direct-current (DC) magnetron reactive sputter deposition. The films were deposited at room temperature and had a typical full width half maximum (FWHM) value of the (0 0 2) rocking curve of around 2 degrees. Resonant devices in thin film plates having surface acoustic wave (SAW) based designs were fabricated by means of low resolution photolithography. The devices were designed to operate with the fast Rayleigh and Lamb modes respectively. Both types of devices exhibited propagation velocities in excess of 10,000 m/s and sufficient electromechanical couplings. The device measurements illustrate the big potential of these modes for the development of low cost IC compatible electroacoustic devices in the lower GHz range. The basic properties of the modes studied are discussed in a comparative manner. Potential commercial applications are also outlined.