Cerebral correlates of the "Kohnstamm phenomenon": an fMRI study

Neuroimage. 2007 Jan 15;34(2):774-83. doi: 10.1016/j.neuroimage.2006.06.050. Epub 2006 Nov 13.

Abstract

This paper addresses the issue of the central correlates of the "Kohnstamm phenomenon", i.e. the long-lasting involuntary muscle contraction which develops after a prolonged isometric voluntary contraction. Although this phenomenon was described as early as 1915, the mechanisms underlying these post-effects are not yet understood. It was therefore proposed to investigate whether specific brain areas may be involved in the motor post-effects induced by either wrist muscle contraction or vibration using the fMRI method. For this purpose, experiments were carried out on the right wrist of 11 healthy subjects. Muscle activity (EMG) and regional cerebral blood flow were recorded during isometric voluntary muscle contraction and muscle vibration, as well as during the subsequent involuntary contractions (the post-effects) which occurred under both conditions. Brain activations were found to occur during the post-contraction and post-vibration periods, which were very similar under both conditions. Brain activation involved motor-related areas usually responsible for voluntary motor command (primary sensory and motor cortices, premotor cortex, anterior and posterior cingulate gyrus) and sensorimotor integration structures such as the posterior parietal cortex. Comparisons between the patterns of brain activation associated with the involuntary post-effects and those accompanying voluntary contraction showed that cerebellar vermis was activated during the post-effect periods whereas the supplementary motor area was activated only during the induction periods. Although post-effects originate from asymmetric proprioceptive inputs, they might also involve a central network where the motor and somatosensory areas and the cerebellum play a key role. In functional terms, they might result from the adaptive recalibration of the postural reference frame altered by the sustained proprioceptive inputs elicited by muscle contraction and vibration.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Brain Mapping*
  • Cerebral Cortex / anatomy & histology*
  • Cerebral Cortex / physiology*
  • Cerebrovascular Circulation
  • Electromyography
  • Evoked Potentials, Motor
  • Female
  • Humans
  • Magnetic Resonance Imaging
  • Male
  • Muscle Contraction / physiology*
  • Muscle, Skeletal / innervation*
  • Vibration