Implicating an introduced generalist parasitoid in the invasive browntail moth's enigmatic demise

Ecology. 2006 Oct;87(10):2664-72. doi: 10.1890/0012-9658(2006)87[2664:iaigpi]2.0.co;2.

Abstract

Recent attention has focused on the harmful effects of introduced biological control agents on nontarget species. The parasitoid Compsilura concinnata is a notable example of such biological control gone wrong. Introduced in 1906 primarily for control of gypsy moth, Lymantria dispar, this tachinid fly now attacks more than 180 species of native Lepidoptera in North America. While it did not prevent outbreaks or spread of gypsy moth, we present reanalyzed historical data and experimental findings suggesting that parasitism by C. concinnata is the cause of the enigmatic near-extirpation of another of North America's most successful invaders, the browntail moth (Euproctis chrysorrhoea). From a range of approximately 160,000 km2 a century ago, browntail moth (BTM) populations currently exist only in two spatially restricted coastal enclaves, where they have persisted for decades. We experimentally established BTM populations within this area and found that they were largely free of mortality caused by C. concinnata. Experimental populations of BTM at inland sites outside of the currently occupied coastal enclaves were decimated by C. concinnata, a result consistent with our reanalysis of historical data on C. concinnata parasitism of the browntail moth. The role of C. concinnata in the disappearance of browntail moth outside these enclaves has not been reported before. Despite the beneficial role played by C. concinnata in reversing the browntail moth invasion, we do not advocate introduction of generalist biological control agents. Our findings illustrate that the impact of such organisms can be both unpredictable and far-reaching.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Diptera / physiology*
  • Ecosystem
  • Host-Parasite Interactions
  • Moths / parasitology*
  • New England
  • Plants
  • Population Density