Masked imidazolyl-dipyrromethanes in the synthesis of imidazole-substituted porphyrins

J Org Chem. 2006 Nov 10;71(23):8807-17. doi: 10.1021/jo061461r.

Abstract

Imidazole-substituted metalloporphyrins are valuable for studies of self-assembly and for applications where water solubility is required. Rational syntheses of porphyrins bearing one or two imidazol-2-yl or imidazol-4-yl groups at the meso positions have been developed. The syntheses employ dipyrromethanes, 1-acyldipyrromethanes, and 1,9-diacyldipyrromethanes bearing an imidazole group at the 5-position. The polar, reactive imidazole unit was successfully masked by use of (1) the 2-(trimethylsilyl)ethoxymethyl (SEM) group at the imidazole pyrrolic nitrogen, and (2) a dialkylboron motif bound to the pyrrole of the dipyrromethane and coordinated to the imidazole imino nitrogen. The nonpolar nature of such doubly masked imidazolyl-dipyrromethanes facilitated handling. Selected masked dipyrromethanes were characterized by 11B and 15N NMR spectroscopy. Five distinct methods were examined to obtain trans-A2B2-, trans-AB2C-, and trans-AB-porphyrins. Each porphyrin contained one or two SEM-protected imidazole units. The SEM group could be removed with TBAF or HCl. Two zinc(II) porphyrins and a palladium(II) porphyrin bearing a single imidazole moiety were prepared and subjected to alkylation (with ethyl iodide, 1,3-propane sultone, or 1,4-butane sultone) to give water-soluble imidazolium- porphyrins. This work establishes the foundation for the rational synthesis of a variety of porphyrins containing imidazole units.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Imidazoles / chemistry*
  • Molecular Conformation
  • Porphyrins / chemical synthesis*
  • Porphyrins / chemistry
  • Pyrroles / chemistry*
  • Stereoisomerism

Substances

  • Imidazoles
  • Porphyrins
  • Pyrroles
  • dipyrromethane
  • imidazole