The importance of fires and floods on tree ages along mountainous gravel-bed streams

Ecol Appl. 2006 Oct;16(5):1757-70. doi: 10.1890/1051-0761(2006)016[1757:tiofaf]2.0.co;2.

Abstract

This paper examines the commonly accepted assumption in the riparian literature that areas adjacent to streams do not burn. Using time-since-fire distributions, derived from stand-origin maps for a watershed in the front ranges of the Canadian Rocky Mountains, we found that the areas adjacent to streams and the whole study watershed have similar fire frequencies. In addition, the relative importance of fires and floods is regulated by a change in channel morphology associated with the creation of bars. The results demonstrate that fires solely control tree establishment along straight streams without bars, while the influence of floods is observed at the onset of lateral- and point-bar formation. This occurs because bars are formed in-channel and require smaller discharges in order to be flooded, compared to higher terraces. Consequently, bars are the only surfaces being flooded more frequently than they are being burned. Thus, overall the results indicate that, on this watershed, areas adjacent to streams are not less likely to burn than the uplands, except for lateral and point bars. The generality of these results to other systems should be tested as they have important implications for current forest ecological definition of "riparian zones," which typically include all fluvially derived landforms, from the channel banks to the terraces. Indeed, this study suggests that along smaller, headwater, gravel-bed mountain watersheds, the forests found on terraces are only influenced by fire and not fluvial processes and should therefore not be included in the riparian zone, while the forests on bars are the only surfaces currently being influenced by fluvial processes. Such a change in definition has implications for both ecologists and forest managers aiming to protect areas along streams as they now must take into account the effects of two disturbances on these small gravel-bed streams.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Conservation of Natural Resources
  • Disasters*
  • Ecosystem*
  • Fires*
  • Rivers*
  • Time Factors
  • Trees / physiology*