Electrochemical formation of crooked gold nanorods and gold networked structures by the additive organic solvent

J Colloid Interface Sci. 2007 Feb 1;306(1):56-65. doi: 10.1016/j.jcis.2006.10.009. Epub 2006 Oct 6.

Abstract

Crooked gold nanorods (CGNRs) and gold network structures are fabricated using a simple electrochemical approach. The growth solution is prepared by surfactant solution as micelle templates with isopropanol (IPA) solvent. The shape of crooked nanorods and networks structure depend on the amount of added IPA solvent. To investigate the influence of isopropanol solvent on the CGNRs, the amount of IPA was varied in the range from 0.05 to 0.2 mL. It was found that the aspect ratios (gamma) of CGNRs were in the range from 1.06 to 1.46, and the UV-vis absorption measurement revealed a pronounced red-shift of the surface plasmon resonance (SPR) band from 532 to 560 nm. High-resolution transmission electron microscopy (HRTEM) showed that the formation of crooked nanorod structure was induced by aggregation of many small gold nuclei between the several large gold nanoparticles during growth, causing the small gold nuclei to link the gold nanoparticles. The CGNRs have a polycrystalline structure via the analysis from selected-area electron diffraction (SAED).