Kinetic analysis of interaction of eukaryotic release factor 3 with guanine nucleotides

J Biol Chem. 2006 Dec 29;281(52):40224-35. doi: 10.1074/jbc.M607461200. Epub 2006 Oct 24.

Abstract

Eukaryotic translation termination is mediated by two release factors: eRF1 recognizes stop codons and triggers peptidyl-tRNA hydrolysis, whereas eRF3 accelerates this process in a GTP-dependent manner. Here we report kinetic analysis of guanine nucleotide binding to eRF3 performed by fluorescence stopped-flow technique using GTP/GDP derivatives carrying the fluorescent methylanthraniloyl (mant-) group, as well as thermodynamic analysis of eRF3 binding to unlabeled guanine nucleotides. Whereas the kinetics of eRF3 binding to mant-GDP is consistent with a one-step binding model, the double-exponential transients of eRF3 binding to mant-GTP indicate a two-step binding mechanism, in which the initial eRF3.mant-GTP complex undergoes subsequent conformational change. The affinity of eRF3 for GTP (K(d), approximately 70 microM) is about 70-fold lower than for GDP (K(d), approximately 1 microM) and both nucleotides dissociate rapidly from eRF3 (k(-1)(mant-GDP) approximately 2.4 s(-1); k(-2)(mant-GTP) approximately 3.3 s(-1)). Whereas not influencing eRF3 binding to GDP, association of eRF3 with eRF1 at physiological Mg(2+) concentrations specifically changes the kinetics of eRF3/mant-GTP interaction and stabilizes eRF3.GTP binding by two orders of magnitude (K(d) approximately 0.7 microM) due to lowering of the dissociation rate constant approximately 24-fold (k(-1)(mant-GTP) approximately 0.14s(-1) approximately 0.14 s(-1)). Thus, eRF1 acts as a GTP dissociation inhibitor (TDI) for eRF3, promoting efficient ribosomal recruitment of its GTP-bound form. 80 S ribosomes did not influence guanine nucleotide binding/exchange on the eRF1 x eRF3 complex. Guanine nucleotide binding and exchange on eRF3, which therefore depends on stimulation by eRF1, is entirely different from that on prokaryotic RF3 and unusual among GTPases.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Binding Sites
  • Fluorescence Resonance Energy Transfer
  • Guanosine Diphosphate / analogs & derivatives*
  • Guanosine Diphosphate / chemistry
  • Guanosine Diphosphate / metabolism
  • Guanosine Triphosphate / chemistry
  • Guanosine Triphosphate / metabolism*
  • Kinetics
  • Peptide Termination Factors / chemistry
  • Peptide Termination Factors / metabolism*
  • Rabbits
  • Thermodynamics
  • ortho-Aminobenzoates / chemistry
  • ortho-Aminobenzoates / metabolism*

Substances

  • Peptide Termination Factors
  • ortho-Aminobenzoates
  • peptide-chain-release factor 3
  • 3'-(methylanthraniloyl)-2'-deoxy-guanosine diphosphate
  • Guanosine Diphosphate
  • 2'(3')-O-(N-methyl)anthraniloylguanosine 5'-triphosphate
  • Guanosine Triphosphate