Ecological health assessment and remediation of the stream impacted by acid mine drainage of the Gwangyang mine area

Environ Monit Assess. 2007 Jun;129(1-3):79-85. doi: 10.1007/s10661-006-9429-9. Epub 2006 Oct 21.

Abstract

Ecological health in a temperate stream impacted by acid mine drainage (AMD) was evaluated by using a multimetric approach of the Index of Biological Integrity (IBI) based on natural fish assemblage. Recently, this approach has been widely used in many developed countries as a tool for ecological risk assessments of water environments. We used 10 metric systems, instead of 12 metrics suggested by Barbour, M. T., Gerritsen, J., Snyder, B. D., & Stribling, J. B. (1999). Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, benthic Macroinvertebrates and Fish, 2nd edn. EPA 841-B-99-002. Washington, DC: U.S. Environmental Protection Agency, Office of Water, for a development of the regional IBI model, and used trophic guilds, habitat guilds, and richness variables for the calculation of IBI values. In the model, the attributes of four of 11 metrics were modified for the regional application. IBI values in the stream averaged 20.6 (n = 5), indicating a "poor condition" in terms of ecological health according to the modified criteria of U.S. EPA (1993). Fish Field and Laboratory Methods for Evaluating the Biological Integrity of Surface Waters. EPA 600-R-92-111. Environmental Monitoring systems Laboratory - Cincinnati office of Modeling, Monitoring systems, and quality assurance Office of Research Development, U.S. EPA, Cincinnati, Ohio, 45268. In particular, mean IBI values in the impacted areas of sites 2 and 3 were 13, and this health condition was categorized as "very poor condition." IBI values in the impacted sites were significantly lower than the values found in the control. Also, we found that fishes in site sites 2 and 3 were not present during the study, and morphological deformity of Rhynchocypris oxycephalus was observed in site 4, influenced directly by sites 2 and 3, indicating a chemical impact in the sites. From the results of experiments in which AMD was treated with marine shells at stagnant condition, pH increased up to 6.0 from 3.1, and Fe and Al were removed up to 99% within 6 h. In the reactor experiment considering field application, pH of effluent maintained around 7.0. In addition, concentrations of Fe, Al, and heavy metals decreased remarkably in the effluents, and bottom-opened screen between neutralizer basins showed high effectiveness in the treatment of AMD.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acids / isolation & purification*
  • Ecology*
  • Environmental Monitoring*
  • Korea
  • Mining*
  • Rivers / microbiology*
  • Water Microbiology*

Substances

  • Acids