The Escherichia coli MotAB proton channel unplugged

J Mol Biol. 2006 Dec 15;364(5):921-37. doi: 10.1016/j.jmb.2006.09.035. Epub 2006 Sep 16.

Abstract

The MotA and MotB proteins of Escherichia coli serve two functions. The MotA4MotB2 complex attaches to the cell wall via MotB to form the stator of the flagellar motor. The complex also couples the flow of hydrogen ions across the cell membrane to movement of the rotor. The TM3 and TM4 transmembrane helices of MotA and the single TM of MotB comprise the proton channel, which is inactive until the complex assembles into a motor. Here, we identify a segment of the MotB protein that acts as a plug to prevent premature proton flow. The plug is in the periplasm just C-terminal to the MotB TM. It consists of an amphipathic alpha helix flanked by Pro52 and Pro65. When MotA is over-expressed with MotB deleted for residues 51-70, a massive influx of protons acidifies the cytoplasm without significantly depleting the proton motive force. Either that acidification or some sequela thereof, such as potassium or water efflux from the cells, inhibits growth. The Pro residues and Ile58, Tyr61, and Phe62 are essential for plug function. Cys-substituted MotB proteins form a disulfide bond between the two plugs that hold the channels open, and the plugs function intrans within the MotA4MotB2 complex. We present a model in which the MotA4MotB2 complex forms in the bulk membrane. Before association with a motor, we propose the plugs insert into the cell membrane parallel with its periplasmic face and interfere with channel formation. When a complex incorporates into a motor, the plugs leave the membrane and associate with each other via their hydrophobic faces to hold the proton channel open.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Alkaline Phosphatase / chemistry
  • Alkaline Phosphatase / genetics
  • Alkaline Phosphatase / metabolism
  • Amino Acid Sequence
  • Amino Acid Substitution
  • Bacterial Proteins / chemistry*
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Cell Membrane / physiology*
  • Cell Proliferation
  • Cross-Linking Reagents
  • Electrophoresis, Polyacrylamide Gel
  • Escherichia coli / metabolism*
  • Escherichia coli Proteins
  • Hydrogen / metabolism
  • Immunoblotting
  • Ion Channels / physiology*
  • Ions
  • Molecular Sequence Data
  • Mutagenesis, Site-Directed
  • Periplasm / metabolism
  • Protein Conformation
  • Protons*
  • Recombinant Fusion Proteins / chemistry
  • Recombinant Fusion Proteins / genetics
  • Recombinant Fusion Proteins / metabolism
  • Sequence Homology, Amino Acid

Substances

  • Bacterial Proteins
  • Cross-Linking Reagents
  • Escherichia coli Proteins
  • Ion Channels
  • Ions
  • MotB protein, Bacteria
  • Protons
  • Recombinant Fusion Proteins
  • Hydrogen
  • Alkaline Phosphatase
  • phoA protein, E coli