Intravascular inertial cavitation activity detection and quantification in vivo with Optison

Ultrasound Med Biol. 2006 Oct;32(10):1601-9. doi: 10.1016/j.ultrasmedbio.2006.07.015.

Abstract

Inertial cavitation (IC) is an important mechanism by which ultrasound (US)-induced bioeffects can be produced. It has been reported that US-induced in vitro mechanical bioeffects with the presence of ultrasound contrast agents (UCAs) are highly correlated with quantified IC "dose" (ICD: cumulated root-mean-squared broadband noise amplitude in the frequency domain). The ICD has also been used to quantify IC activity in ex vivo perfused rabbit ear vessels. The in vivo experiments reported here using a rabbit ear vessel model were designed to: (1) detect and quantify IC activity in vivo within the constrained environment of rabbit auricular veins with the presence of Optison and (2) measure the temporal evolution of microbubble IC activity and the ICD generated during insonation treatment, as a function of acoustic parameters. Preselected regions-of-interest (ROI) in the rabbit ear vein were exposed to pulsed focused US (1.17 MHz, 1 Hz PRF). Experimental acoustic variables included peak rarefaction pressure amplitude ([PRPA]: 1.1, 3.0, 6.5 or 9.0 MPa) and pulse length (20, 100, 500 or 1000 cycles). ICD was quantified based on passive cavitation detection (PCD) measurements. The results show that: (1) after Optison injection, the time to onset of measurable microbubble IC activity was relatively consistent, approximately 20 s; (2) after reaching its peak value, the IC activity decayed exponentially and the half-life decay coefficient (t(1/2)) increased with increasing PRPA and pulse length; and (3) the normalized ICD generated by pulsed US exposure increased significantly with increasing PRPA and pulse length.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Albumins / administration & dosage*
  • Animals
  • Contrast Media
  • Ear / blood supply*
  • Fluorocarbons / administration & dosage*
  • Half-Life
  • Injections
  • Microbubbles
  • Microspheres
  • Models, Animal
  • Rabbits
  • Time Factors
  • Ultrasonics*
  • Veins

Substances

  • Albumins
  • Contrast Media
  • FS 069
  • Fluorocarbons