Redox non-innocence of thioether macrocycles: elucidation of the electronic structures of mononuclear complexes of gold(II) and silver(II)

J Am Chem Soc. 2006 Oct 25;128(42):13827-39. doi: 10.1021/ja0636439.

Abstract

The mononuclear +2 oxidation state metal complexes [Au([9]aneS(3))(2)](2+) and [Ag([18]aneS(6))](2+) have been synthesized and characterized crystallographically. The crystal structure of the Au(II) species [Au([9]aneS(3))(2)](BF(4))(2) shows a Jahn-Teller tetragonally distorted geometry with Au-S(1) = 2.839(5), Au-S(2) = 2.462(5), and Au-S(3) = 2.452(5) A. The related Ag(II) complex [Ag([18]aneS(6))](ClO(4))(2) has been structurally characterized at both 150 and 30 K and is the first structurally characterized complex of Ag(II) with homoleptic thioether S-coordination. The single-crystal X-ray structure of [Ag([18]aneS(6))](ClO(4))(2) confirms octahedral homoleptic S(6)-thioether coordination. At 150 K, the structure contains two independent Ag(II)-S distances of 2.569(7) and 2.720(6) A. At 30 K, the structure retains two independent Ag(II)-S distances of 2.615(6) and 2.620(6) A, with the complex cation retaining 3-fold symmetry. The electronic structures of [Au([9]aneS(3))(2)](2+) and [Ag([18]aneS(6))](2+) have been probed in depth using multifrequency EPR spectroscopy coupled with DFT calculations. For [Au([9]aneS(3))(2)](2+), the spectra are complex due to large quadrupole coupling to (197)Au. Simulation of the multifrequency spectra gives the principal g values, hyperfine (A) and quadrupole (P) couplings, and furthermore reveals non-co-incidence of the principal axes of the P tensor with respect to the A and g matrices. These results are rationalized in terms of the electronic and geometric structure and reveal that the SOMO has ca. 30% Au 5d(xy)() character, consistent with DFT calculations (27% Au character). For [Ag([18]aneS(6))](2+), detailed EPR spectroscopic analysis confirms that the SOMO has ca. 26% Ag 4d(xy)() character and DFT calculations are consistent with this result (22% Ag character).