Thermal conductivity in the vicinity of the quantum critical end point in Sr3Ru2O7

Phys Rev Lett. 2006 Aug 11;97(6):067005. doi: 10.1103/PhysRevLett.97.067005. Epub 2006 Aug 10.

Abstract

Thermal conductivity of Sr3Ru2O7 was measured down to 40 mK and at magnetic fields through the quantum critical end point at Hc=7.85 T. A peak in the electrical resistivity as a function of the field was mimicked by the thermal resistivity. In the limit as T-->0 K, we find that the Wiedemann-Franz law is satisfied to within 5% at all fields, implying that there is no breakdown of the electron despite the destruction of the Fermi liquid state at quantum criticality. A significant change in disorder [from rho0(H=0 T)=2.1 to 0.5 microOmega cm] does not influence our conclusions. At finite temperatures, the temperature dependence of the Lorenz number is consistent with ferromagnetic fluctuations causing the non-Fermi liquid behavior as one would expect at a metamagnetic quantum critical end point.