Photochemistry of 1,2-dihydronaphthalene oxide: concurrent triplet and singlet processes via singlet excitation

J Org Chem. 2006 Oct 13;71(21):8173-7. doi: 10.1021/jo0614184.

Abstract

The photochemistry of 1,2-dihydronaphthalene oxide (254 nm) was reexamined and indan was found to be a primary photoproduct, as well as the traditionally assumed secondary photoproduct. Quenching studies demonstrated that indan, as a primary photoproduct, is derived from a triplet pathway, competing with a singlet route, back to the ground state surface. CASSCF calculations strongly suggest that the triplet pathway consists of a dissociation of the oxirane moiety to give a triplet carbene and aldehyde, which via hydrogen abstraction-decarbonylation-ISC recloses to give indan. Conical intersections corresponding to the presumed 1,2-hydrogen shift and 1,2-alkyl shift to give 2-tetralone and 1-indancarbaldehyde, respectively, were located computationally.