Synthesis, characterization, and tunable optical properties of hollow gold nanospheres

J Phys Chem B. 2006 Oct 12;110(40):19935-44. doi: 10.1021/jp062136a.

Abstract

Nearly monodisperse hollow gold nanospheres (HGNs) with tunable interior and exterior diameters have been synthesized by sacrificial galvanic replacement of cobalt nanoparticles. It is possible to tune the peak of the surface plasmon band absorption between 550 and 820 nm by carefully controlling particle size and wall thickness. Cobalt particle size is tunable by simultaneously changing the concentration of sodium borohydride and sodium citrate, the reducing and capping agent, respectively. The thickness of the gold shell can be varied by carefully controlling the addition of gold salt. With successful demonstration of ensemble as well as single HGN surface-enhanced Raman scattering, these HGNs have shown great potential for chemical and biological sensing applications, especially those requiring nanostructures with near-IR absorption.