Ecosystem alteration modifies the relative strengths of bottom-up and top-down forces in a herbivore population

J Anim Ecol. 2006 Jul;75(4):853-61; discussion 852. doi: 10.1111/j.1365-2656.2006.01109.x.

Abstract

1. Ecosystem alterations can affect the abundance, distribution and diversity of plants and animals, and thus potentially change the relative strength of bottom-up (the plant resource) and top-down (natural enemies) trophic forces acting on herbivore populations. 2. The hypothesis that alterations of the forest ecosystem associated with precommercial thinning have contributed to the increased severity of outbreaks of Neodiprion abietis (Harris), a sawfly defoliator, through the reduction of trophic forces acting on N. abietis larvae, was tested using exclusion techniques. 3. The relative contributions to N. abietis larval mortality of bottom-up and top-down forces both increased with increasing levels of defoliation and were both reduced by thinning. The reduction of bottom-up and top-down forces caused a 58% mean increase in N. abietis larval survival in thinned compared with untreated stands, which is less than would be expected by the sum of the effects of thinning on each source of mortality. Evidence indicates that the partly compensatory, partly additive nature of the mortality associated with trophic forces in the system under study is responsible for this discrepancy. 4. To our knowledge, this is the first study to show the impact of ecosystem alterations on the balance between bottom-up and top-down forces acting on an eruptive herbivore population along a gradient of host-plant defoliation, and how this can lead to increased outbreak severity. It is stressed that accurate estimates of the relative contributions of bottom-up and top-down forces to mortality cannot be obtained if the additive or compensatory nature of the mortality associated with these trophic forces is overlooked.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Ecosystem*
  • Feeding Behavior
  • Hymenoptera / physiology*
  • Larva
  • Plant Leaves
  • Population Dynamics