Critical role of the epithelial Ca2+ channel TRPV5 in active Ca2+ reabsorption as revealed by TRPV5/calbindin-D28K knockout mice

J Am Soc Nephrol. 2006 Nov;17(11):3020-7. doi: 10.1681/ASN.2006060676. Epub 2006 Sep 27.

Abstract

The epithelial Ca(2+) channel TRPV5 facilitates apical Ca(2+) entry during active Ca(2+) reabsorption in the distal convoluted tubule. In this process, cytosolic Ca(2+) remains at low nontoxic concentrations because the Ca(2+) influx is buffered rapidly by calbindin-D(28K). Subsequently, Ca(2+) that is bound to calbindin-D(28K) is shuttled toward the basolateral Ca(2+) extrusion systems. For addressing the in vivo role of TRPV5 and calbindin-D(28K) in the maintenance of the Ca(2+) balance, single- and double-knockout mice of TRPV5 and calbindin-D(28K) (TRPV5(-/-), calbindin-D(28K)(-/-), and TRPV5(-/-)/calbindin-D(28K)(-/-)) were characterized. These mice strains were fed two Ca(2+) diets (0.02 and 2% wt/wt) to investigate the influence of dietary Ca(2+) content on the Ca(2+) balance. Urine analysis indicated that TRPV5(-/-)/calbindin-D(28K)(-/-) mice exhibit on both diets hypercalciuria compared with wild-type mice. Ca(2+) excretion in TRPV5(-/-)/calbindin-D(28K)(-/-) mice was not significantly different from TRPV5(-/-) mice, whereas calbindin-D(28K)(-/-) mice did not show hypercalciuria. The similarity between TRPV5(-/-)/calbindin-D(28K)(-/-) and TRPV5(-/-) mice was supported further by an equivalent increase in renal calbindin-D(9K) expression and in intestinal Ca(2+) hyperabsorption as a result of upregulation of calbindin-D(9K) and TRPV6 expression in the duodenum. Elevated serum parathyroid hormone and 1,25-dihydroxyvitamin D(3) levels accompanied the enhanced expression of the Ca(2+) transporters. Intestinal Ca(2+) absorption and expression of calbindin-D(9K) and TRPV6, as well as serum parameters of the calbindin-D(28K)(-/-) mice, did not differ from those of wild-type mice. These results underline the gatekeeper function of TRPV5 being the rate-limiting step in active Ca(2+) reabsorption, unlike calbindin-D(28K), which possibly is compensated by calbindin-D(9K).

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Absorption
  • Animals
  • Calbindin 1
  • Calbindins
  • Calcium / metabolism*
  • Calcium Channels / genetics
  • Calcium Channels / physiology*
  • Mice
  • Mice, Knockout
  • S100 Calcium Binding Protein G / genetics*
  • TRPV Cation Channels / genetics
  • TRPV Cation Channels / physiology*

Substances

  • Calb1 protein, mouse
  • Calbindin 1
  • Calbindins
  • Calcium Channels
  • S100 Calcium Binding Protein G
  • TRPV Cation Channels
  • Trpv5 protein, mouse
  • Calcium