Synthesis and characterization of iron silicon boron (Fe5Si2B) and iron boride (Fe3B) nanowires

J Am Chem Soc. 2006 Oct 4;128(39):12778-84. doi: 10.1021/ja0610378.

Abstract

Single-crystal iron silicon boron (Fe(5)Si(2)B) and iron boride (Fe(3)B) nanowires were synthesized by a chemical vapor deposition (CVD) method on either silicon dioxide (SiO(2)) on silicon (Si) or Si substrates without introducing any catalysts. FeI(2) and BI(3) were used as precursors. The typical size of the nanowires is about 5-50 nm in width and 1-20 mum in length. Different kinds of Fe-Si-B and Fe-B structures were synthesized by adjusting the ratio of FeI(2) vapor to BI(3) vapor. Single-crystal Fe(5)Si(2)B nanowires formed when the FeI(2) sublimator temperature was kept in the range of 540-570 degrees C. If the FeI(2) sublimator temperature was adjusted in the range of 430-470 degrees C, single-crystal Fe(3)B nanowires were produced. Fe(3)B nanowires grow from polycrystalline Fe(5)SiB(2) particles, while Fe(5)Si(2)B nanowires grow out of the Fe(5)Si(2)B layers, which are attached to triangle shaped FeSi particles. Both the ratio of FeI(2) vapor to BI(3) vapor and the formation of the particles (Fe(5)SiB(2) particles for the growth of Fe(3)B nanowires, FeSi particles for the growth of Fe(5)Si(2)B nanowires) are critical for the growth of Fe(3)B and Fe(5)Si(2)B nanowires. The correct FeI(2) vapor to BI(3) vapor ratio assures the desired phase form, while the particles provide preferential sites for adsorption and nucleation of Fe(3)B or Fe(5)Si(2)B molecules. Fe(3)B or Fe(5)Si(2)B nanowires grow due to the preferred growth direction of <110>.