3D Gabor analysis of transient waves propagating along an AT cut quartz disk

Ultrasonics. 2006 Dec 22:44 Suppl 1:e1173-7. doi: 10.1016/j.ultras.2006.05.065. Epub 2006 Jun 5.

Abstract

Laser detection methods allow the investigation of ultrasonic transient phenomena in both space and time dimensions. Used for the experimental investigation of surface wave propagation along a 2D surface, laser ultrasonic leads to three dimensional (3D) space-time signal collections. The classical high resolution signal processing methods or 3D Fourier Transforms can be used in order to extract the wave propagation information, however these methods are not adapted for identifying where and when the waves are generated. In order to quantify these transient aspects in the space-time-wave number-frequency domains, the 3D Gabor transform is introduced. The 3D Gabor transform properties are presented. The potential of the 3D Gabor for the identification of the local and transient complex wave numbers is illustrated on the propagation of surface waves on a piezoelectric quartz (AT cut, 6 MHz). In this experimental study, the quartz is excited by a voltage pulse and the quartz surface is scanned by a laser vibrometer. The 3D Gabor analysis shows that the circular electrodes borders generate anti-phase surface waves that propagates outside the electrodes, with a strong energy contribution in the low frequency domain (<1 MHz). The transient analysis also points out, for higher frequencies, where the surface waves are generated and how they propagate with respect of both to the geometry of the electrodes and the crystallographic axis of the quartz. These results confirm the theoretical modal analysis and provide new knowledge about the key role played by the electrodes border. This will allow the optimization of the electrodes shape in order to design low frequency Lamb wave sensors.