Synthesis and matrix-assisted laser desorption/ionization time-of-flight characterization of bisphenol-A copolyformals containing nickel(II)/Schiff base, eicosane and 2-butene units in the main chain

Rapid Commun Mass Spectrom. 2006;20(19):2961-8. doi: 10.1002/rcm.2657.

Abstract

Some bisphenol-A copolyformals, containing in the main chain different amounts of a Ni-diimine nonlinear optical (NLO)-chromophore, eicosane and/or 2-butene units, were synthesized by condensation reaction between dibromomethane and suitable mixtures of Ni(II)/Schiff base complex, 1,20-di(bisphenol-A)ether-eicosane and/or 1,4-di(bisphenol-A)ether-2-butene. Structural composition and thermal properties of polymeric materials were inferred by analyses by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS), nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC) and thermogravimetry (TG). MALDI-TOF data show that both Ni-diimine and unsaturated units are present in the copolyformals with a homogeneous arrangement in all the polymer mass range (GPC data). It has also been ascertained that the glass transition temperature (Tg) of the copolymers changes as a consequence of the abundance of aliphatic units in the macromolecules (DSC data). Cross-linking experiments of the copolymer at temperatures near the Tg value and under UV irradiation were also performed.