Photodissociation of Mg+-XCH3 (X=F, Cl, Br, and I) complexes. II. Fragment angular and energy distributions

J Chem Phys. 2006 Sep 7;125(9):094310. doi: 10.1063/1.2336435.

Abstract

Angular and energy distributions of photofragments from Mg+-XCH3 (X=F, Cl, Br, and I) were deduced from time-of-flight (TOF) profiles measured by rotating the polarization direction of the dissociation laser with respect to ion beam direction. The TOF profiles of ICH3+ and MgI+ fragment ions produced from Mg+-ICH3 complex with 266 and 355 nm photons showed clear but opposite recoil anisotropy to each other. In addition, BrCH3+ formed by a dissociation of the Mg+-BrCH3 complex at a photolysis wavelength of 266 nm also showed an anisotropic distribution in the TOF profile which had the same behavior as the profile of ICH3+. For Mg+-FCH3 complex, CH3+ and MgF+ formed with a 266 nm photon had also spatial anisotropy, in which the TOF profile of MgF+ was almost opposite to that of MgI+. These anisotropic distributions were explained by (1) local excitation on the Mg+ ion, (2) rapid dissociation compared with a rotational period of the parent complex, and (3) geometrical structures of the parent complexes. Anisotropy beta parameter values were determined to be +1.30(ICH3+), -0.50(MgI+), +0.74(BrCH3+), and +0.75(CH3+ and MgF+). This dependence on the halogen atom observed in beta values was qualitatively explained by both the geometrical parameters and classical rotational periods of parent complexes. In the product energy distribution, 46%, 40%, 21%, 16%, and 16% of available energies were found to be transferred into translational energies of ICH3+, MgI+, BrCH3 +, CH3+, and MgF+, respectively. These values were compared with energy distributions estimated by a statistical prior distribution and a nonstatistical impulsive model. For ICH3+ and MgI+, the translational energies determined from the measurement had values between those estimated from statistical and nonstatistical models. On the other hand, the energy partitioning for the product ions of BrCH3+, CH3+, and MgF+ was found to be almost statistical. From these considerations, we concluded that nonstatistical processes were more important in the dissociation of Mg+-ICH3 than in other systems.