Inclusion complex of 2-naphthylamine-6-sulfonate with beta-cyclodextrin: intramolecular charge transfer versus hydrogen bonding effects

Spectrochim Acta A Mol Biomol Spectrosc. 2007 Apr;66(4-5):1228-36. doi: 10.1016/j.saa.2006.06.011. Epub 2006 Jun 23.

Abstract

The photophysical characteristics of the ground and excited states of 2-naphthylamine-6-sulfonate (2-NA-6-S) were investigated in different solvents and in beta-cyclodextrin (beta-CD). The spectral shifts are well correlated with Kamlet-Taft relationship. Multiple linear regression analysis indicated that both non-specific dipolar interaction and specific hydrogen bonding interactions play competitive roles in determining the position of the absorption maximum, while the dipolar interaction is the dominating parameter in determining the emission maximum. For the Stokes shift, both the nonspecific interaction and the hydrogen donation property of the solvent are participating equally. The molecular encapsulation of 2-NA-6-S by beta-CD in aqueous solution has been studied by different spectroscopic techniques. Fluorescence measurements show that the dielectric constant of beta-CD experienced by the included 2-NA-6-S is intermediate between water and methanol. The changes observed in the absorption and fluorescence spectra of 2-NA-6-S upon inclusion in beta-CD allowed the association constant to be calculated and found to be 465+/-100 and 495+/-100 M-1, respectively. The changes observed for the chemical shifts of 2-NA-6-S and beta-CD 1H NMR spectra and the corresponding 1H NMR spectra of their mixture confirmed the formation of the inclusion complex and showed that 2-NA-6-S is encapsulated in beta-CD cavity in a tilted equatorial approach.

MeSH terms

  • Deuterium Oxide / chemistry
  • Hydrogen Bonding
  • Hydrogen-Ion Concentration
  • Magnetic Resonance Spectroscopy
  • Naphthalenesulfonates / chemistry*
  • Solutions
  • Solvents
  • Spectrometry, Fluorescence
  • Static Electricity
  • Sulfonic Acids / chemistry*
  • beta-Cyclodextrins / chemistry*

Substances

  • Naphthalenesulfonates
  • Solutions
  • Solvents
  • Sulfonic Acids
  • beta-Cyclodextrins
  • 2-naphthylamine-1-sulfonic acid
  • Deuterium Oxide
  • betadex