Pose and motion recovery from feature correspondences and a digital terrain map

IEEE Trans Pattern Anal Mach Intell. 2006 Sep;28(9):1404-17. doi: 10.1109/TPAMI.2006.192.

Abstract

A novel algorithm for pose and motion estimation using corresponding features and a Digital Terrain Map is proposed. Using a Digital Terrain (or Digital Elevation) Map (DTM/DEM) as a global reference enables the elimination of the ambiguity present in vision-based algorithms for motion recovery. As a consequence, the absolute position and orientation of a camera can be recovered with respect to the external reference frame. In order to do this, the DTM is used to formulate a constraint between corresponding features in two consecutive frames. Explicit reconstruction of the 3D world is not required. When considering a number of feature points, the resulting constraints can be solved using nonlinear optimization in terms of position, orientation, and motion. Such a procedure requires an initial guess of these parameters, which can be obtained from dead-reckoning or any other source. The feasibility of the algorithm is established through extensive experimentation. Performance is compared with a state-of-the-art alternative algorithm, which intermediately reconstructs the 3D structure and then registers it to the DTM. A clear advantage for the novel algorithm is demonstrated in variety of scenarios.

MeSH terms

  • Algorithms*
  • Artificial Intelligence*
  • Image Enhancement / methods*
  • Image Interpretation, Computer-Assisted / methods*
  • Information Storage and Retrieval / methods
  • Motion
  • Pattern Recognition, Automated / methods*
  • Photogrammetry / methods*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Signal Processing, Computer-Assisted*