Spectral transformation of femtosecond Cr:forsterite laser pulses in a flint-glass photonic-crystal fiber

Appl Opt. 2006 Sep 10;45(26):6823-30. doi: 10.1364/ao.45.006823.

Abstract

Nonlinear-optical performance of photonic-crystal fibers (PCFs) made of highly nonlinear TF10 glass is studied and compared with the general tendencies of nonlinear-optical interactions in fused-silica PCFs. The loss of TF10 glass PCFs prevents the generation of supercontinuum emission with a broad and flat spectrum, which typically requires propagation lengths comparable with or exceeding the attenuation length of the fiber. However, dispersive-wave emission of solitons, induced by high-order dispersion, phase-matched four-wave-mixing processes, and self-phase-modulation-induced spectral broadening are substantially enhanced in TF10 glass PCFs due to the high material nonlinearity, providing a high efficiency of frequency conversion of Cr:forsterite laser pulses.