Coarse neural tuning for print peaks when children learn to read

Neuroimage. 2006 Nov 1;33(2):749-58. doi: 10.1016/j.neuroimage.2006.06.025. Epub 2006 Aug 21.

Abstract

Adult readers exhibit increased fast N1 activity to wordlike strings in their event-related brain potential. This increase has been linked to visual expertise for print, implying a protracted monotonic development. We investigated the development of coarse neural tuning for print by studying children longitudinally before and after learning to read, and comparing them to skilled adults. The coarse N1 tuning, which had been absent in nonreading kindergarten children, emerged in less than 2 years after the same children had mastered basic reading skills in 2nd grade. The N1 became larger for words than symbol strings in every child, and this coarse tuning was stronger for faster readers. Fast brain processes thus specialize rapidly for print when children learn to read, and play an important functional role in the fluency of early reading. Comparing 2nd graders with adults revealed a further decrease of the coarse N1 tuning in adults, presumably reflecting further reading practice. This constitutes a prominent nonlinear development of coarse neurophysiological specialization for print. The maximum tuning in novice readers possibly reflects the high sensitivity of their neural network for visual aspects of print, and a more selective tuning in expert adult readers.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Brain Mapping / methods*
  • Child
  • Child, Preschool
  • Female
  • Humans
  • Learning / physiology*
  • Male
  • Neurons / physiology*
  • Occipital Lobe / physiology*
  • Reaction Time
  • Reading*
  • Reference Values
  • Temporal Lobe / physiology*