EXAFS study of U(VI) uptake by calcium silicate hydrates

J Colloid Interface Sci. 2006 Nov 1;303(1):195-204. doi: 10.1016/j.jcis.2006.07.019. Epub 2006 Aug 22.

Abstract

Among the different cement minerals, calcium silicate hydrates (C-S-H) are the prime candidates for heavy metal binding because of their abundance and appropriate structure. Immobilization processes of heavy metals by cementitious materials, and in particular C-S-H phases, thus play an important role in multibarrier concepts developed worldwide for the safe disposal of hazardous and radioactive wastes. In this study, the uptake of U(VI) by C-S-H has been investigated using X-ray absorption fine structure (XAFS) spectroscopy. C-S-H phases were synthesized using two different procedures: One is based on the mixing of CaO and SiO2 solids ("direct reaction" method); for the other one starting solutions of Ca and Si are used ("solution reaction" method). XAFS investigations were carried out on samples doped with U(VI). U(VI) was either sorbed onto previously precipitated C-S-H phases (sorption samples) or added during C-S-H synthesis (coprecipitation samples). The coordination environment of U(VI) in the sorption samples was found to be independent of the procedure used for C-S-H synthesis. A split equatorial oxygen shell (Oeq1: R=2.23-2.27 A; Oeq2: R=2.36-2.45 A), neighboring silicon atoms at short (R=3.07-3.11 A) and long (R=3.71-3.77 A) distances, and neighboring Ca atoms (R=3.77-3.81 and 4.15-4.29 A) were observed for all the samples. The structural parameters resemble those reported for uranophane. The coordination environment of U(VI) in the coprecipitation samples depends on the method used for C-S-H synthesis, and further, the spectra differ from those determined for the sorption samples. UU backscattering contributions were observed in the samples prepared using the direct reaction method, whereas no split equatorial shell appeared in the samples prepared using the solution reaction method.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Absorptiometry, Photon
  • Calcium Compounds / chemistry*
  • Cations / chemistry
  • Silicates / chemistry*
  • Uranium / chemistry*
  • Water Pollutants, Radioactive / chemistry*

Substances

  • Calcium Compounds
  • Cations
  • Silicates
  • Water Pollutants, Radioactive
  • Uranium
  • calcium silicate