Theoretical determination of the rate constant for OH hydrogen abstraction from toluene

J Phys Chem A. 2006 Aug 24;110(33):10155-62. doi: 10.1021/jp062775l.

Abstract

The OH abstraction of a hydrogen atom from both the side chain and the ring of toluene has been studied in the range 275-1000 K using quantum chemistry methods. It is found that the best method of calculation is to perform geometry optimization and frequency calculations at the BHandHLYP/6-311++G(d,p) level, followed by CCSD(T) calculations of the optimized structures with the same basis set. Four different reaction paths are considered, corresponding to the side chain and three possible ring hydrogen abstractions, and the branching ratio is determined as a function of temperature. Although negligible at low temperatures, at 1000 K ring-H abstraction is found to contribute 11% to the total abstraction reaction. The calculated rate coefficients agree very well with experimental results. Side chain abstraction is shown to occur through a complex mechanism that includes the reversible formation of a collisionally stabilized reactant complex.