Direct limits on the oscillation frequency

Phys Rev Lett. 2006 Jul 14;97(2):021802. doi: 10.1103/PhysRevLett.97.021802. Epub 2006 Jul 14.

Abstract

We report results of a study of the B(s)(0) oscillation frequency using a large sample of B(s)(0) semileptonic decays corresponding to approximately 1 fb(-1) of integrated luminosity collected by the D0 experiment at the Fermilab Tevatron Collider in 2002-2006. The amplitude method gives a lower limit on the B(s)(0) oscillation frequency at 14.8 ps(-1) at the 95% C.L. At delta m(s) = 19 ps(-1), the amplitude deviates from the hypothesis A= 0(1) by 2.5 (1.6) standard deviations, corresponding to a two-sided C.L. of 1% (10%). A likelihood scan over the oscillation frequency, delta m(s), gives a most probable value of 19 ps(-1) and a range of 17 < delta m(s) < 21 ps(-1)at the 90% C.L., assuming Gaussian uncertainties. This is the first direct two-sided bound measured by a single experiment. If delta m(s) lies above 22 ps(-1), then the probability that it would produce a likelihood minimum similar to the one observed in the interval 16-22 ps(-1) is (5.0 +/- 0.3)%.