Critical behavior in colloid-polymer mixtures: theory and simulation

Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jun;73(6 Pt 1):061407. doi: 10.1103/PhysRevE.73.061407. Epub 2006 Jun 26.

Abstract

We extensively investigated the critical behavior of mixtures of colloids and polymers via the two-component Asakura-Oosawa model and its reduction to a one-component colloidal fluid using accurate theoretical and simulation techniques. In particular the theoretical approach, hierarchical reference theory [A. Parola and L. Reatto, Adv. Phys. 44, 211 (1995)], incorporates realistically the effects of long-range fluctuations on phase separation giving exponents which differ strongly from their mean-field values, and are in good agreement with those of the three-dimensional Ising model. Computer simulations combined with finite-size scaling analysis confirm the Ising universality and the accuracy of the theory, although some discrepancy in the location of the critical point between one-component and full-mixture description remains. To assess the limit of the pair-interaction description, we compare one-component and two-component results.