When, how and how much: Gender-specific resource-use strategies in the dioecious tree Juniperus thurifera

Ann Bot. 2006 Oct;98(4):885-9. doi: 10.1093/aob/mcl172. Epub 2006 Aug 11.

Abstract

Background and aims: In dioecious species male and female plants experience different selective pressures and often incur different reproductive costs. An increase in reproductive investment habitually results in a reduction of the resources available to other demands, such as vegetative growth. Tree-ring growth is an integrative measure that tracks vegetative investment through the plant's entire life span. This allows the study of gender-specific vegetative allocation strategies in dioecious tree species thoughout their life stages.

Methods: Standard dendrochronological procedures were used to measure tree-ring width. Analyses of time-series were made by means of General Mixed Models with correction of autocorrelated values by the use of an autoregressive covariance structure of order one. Bootstrapped correlation functions were used to study the relationship between climate and tree-ring width.

Key results: Male and female trees invest a similar amount of resources to ring growth during the early life stages of Juniperus thurifera. However, after reaching sexual maturity, tree-ring growth is reduced for both sexes. Furthermore, females experience a significantly stronger reduction in growth than males, which indicates a lower vegetative allocation in females. In addition, growth was positively correlated with precipitation from the current winter and spring in male trees but only to current spring precipitation in females.

Conclusions: Once sexual maturity is achieved, tree rings grow proportionally more in males than in females. Differences in tree-ring growth between the genders could be a strategy to respond to different reproductive demands. Therefore, and responding to the questions of when, how and how much asked in the title, it is shown that male trees invest more resources to growth than female trees only after reaching sexual maturity, and they use these resources in a different temporal way.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Climate
  • Juniperus / growth & development
  • Juniperus / physiology*
  • Reproduction / physiology
  • Seasons
  • Time Factors