Senescence and cell cycle control

Results Probl Cell Differ. 2006:42:257-70. doi: 10.1007/400_001.

Abstract

In response to various stresses, such as telomere shortening during continuous proliferation, oxidative stress, DNA damage and aberrant oncogene activation, normal cells undergo cellular senescence, which is a stable postmitotic state with particular morphology and metabolism. Signaling that induces senescence involves two major tumor suppressor cascades, i.e., the INK4a-Rb pathway and the ARF-p53 pathway. Diverse stimuli upregulate these interacting pathways, which orchestrate exit from the cell cycle. Recent studies have provided insights into substantial differences in senescence-inducing signals in primary cells of human and rodent origins. This review is focused on recent advances in understanding the roles of the tumor-suppressive pathways in senescence.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Cell Cycle*
  • Cellular Senescence*
  • Humans
  • Models, Biological