An efficient computational approach for the evaluation of substituent constants

J Org Chem. 2006 Aug 18;71(17):6382-7. doi: 10.1021/jo0605288.

Abstract

Density functional theory computations at the B3LYP/6-311+G(2d,2p) and BPW91/6-311G(d,p) levels were carried out for a series of 15 monosubstituted benzene derivatives to study dependencies between electronic structure parameters and experimental reactivity constants. An efficient and accurate computational approach for the evaluation of sigma(0) substituent constants for substituted benzene systems is outlined. It is based on the excellent linear correlation between the experimental reactivity constants and the theoretical electrostatic potential values (EPN) at the carbon atoms in the para and meta positions. The results underline the usefulness of the EPN as a local reactivity descriptor. Theoretical computations to assess the influence of water solvent using the SCIPCM method showed that the solvent enhances the overall effect of polar substituents by about 30%. The results obtained indicate also that the relative values of the sigma(0) constants are predominantly determined by intramolecular influences.