Dynamics of fracture in drying suspensions

Langmuir. 2006 Aug 15;22(17):7144-7. doi: 10.1021/la061251+.

Abstract

We investigate the dynamics of fracture in drying films of colloidal silica. Water loss quenches the nanoparticle dispersions to form a liquid-saturated elastic network of particles that relieves drying-induced strain by cracking. These cracks display intriguing intermittent motion originating from the deformation of arrested crack tips and aging of the elastic network. The dynamics of a single crack exhibits a universal evolution, described by a balance of the driving elastic power with the sum of interfacial power and the viscous dissipation rate of flowing interstitial fluid.