Modeling local flotation frequency in a turbulent flow field

Adv Colloid Interface Sci. 2006 Sep 25;122(1-3):79-91. doi: 10.1016/j.cis.2006.06.014. Epub 2006 Aug 7.

Abstract

Despite the significance of turbulent fluid motion for enhancing the flotation rate in several industrial processes, there is no unified approach to the modeling of the flotation rate in a turbulent flow field. Appropriate modeling of the local flotation (bubble-particle attachment) rate is the basic constituent for global modeling and prediction of flotation equipment efficiency. Existing approaches for the local flotation rate are limited to specific set of conditions like high or low turbulence. In addition, the combined effects of buoyant bubble rise and/or particle gravity settling are usually ignored. The situation is even vaguer for the computation of collision and attachment efficiencies which are usually computed using the gravity induced velocities although the dominant mode of flotation is the turbulent one. The scope of this work is clear: the development of a general expression for the flotation rate in a turbulent flow field which will cover in a unified and consistent way all possible sets of the problem parameters. This is achieved by using concepts from statistical approach to homogeneous turbulence and gas kinetic theory.