How to avoid glucose degradation products in peritoneal dialysis fluids

Perit Dial Int. 2006 Jul-Aug;26(4):490-7.

Abstract

Objective: The formation of glucose degradation products (GDPs) during sterilization of peritoneal dialysis fluids (PDFs) is one of the most important aspects of biocompatibility of glucose-containing PDFs. Producers of PDFs are thus trying to minimize the level of GDPs in their products. 3,4-Dideoxyglucosone-3-ene (3,4-DGE) has been identified as the most bioreactive GDP in PDFs. It exists in a temperature-dependent equilibrium with a pool of 3-deoxyglucosone (3-DG) and is a precursor in the irreversible formation of 5-hydroxymethyl furaldehyde (5-HMF). The aim of the present study was to investigate how to minimize GDPs in PDFs and how different manufacturers have succeeded in doing so.

Design: Glucose solutions at different pHs and concentrations were heat sterilized and 3-DG, 3,4-DGE, 5-HMF, formaldehyde, and acetaldehyde were analyzed. Conventional as well as biocompatible fluids from different manufacturers were analyzed in parallel for GDP concentrations.

Results: The concentrations of 3-DG and 3,4-DGE produced during heat sterilization decreased when pH was reduced to about 2. Concentration of 5-HMF decreased when pH was reduced to 2.6. After further decrease to a pH of 2.0, concentration of 5-HMF increased slightly, and below a pH of 2.0 it increased considerably, together with formaldehyde; 3-DG continued to drop and 3,4-DGE remained constant. Inhibition of cell growth was paralleled by 3,4-DGE concentration at pH 2.0 - 6.0. A high glucose concentration lowered concentrations of 3,4-DGE and 3-DG at pH 5.5 and of 5-HMF at pH 1. At pH 2.2 and 3.2, glucose concentration had a minor effect on the formation of GDPs. All conventional PDFs contained high levels of 3,4-DGE and 3-DG. Concentrations were considerably lower in the biocompatible fluids. However, the concentration of 5-H M F was slightly higher in all the biocompatible fluids.

Conclusion: The best way to avoid reactive GDPs is to have a pH between 2.0 and 2.6 during sterilization. If pHs outside this range are used, it becomes more important to have high glucose concentration during the sterilization process. There are large variations in GDPs, both within and between biocompatible and conventionally manufactured PDFs.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Division
  • Dialysis Solutions / analysis
  • Dialysis Solutions / chemistry*
  • Dialysis Solutions / classification
  • Glucose / analogs & derivatives
  • Glucose / analysis
  • Glucose / metabolism*
  • Humans
  • Hydrogen-Ion Concentration
  • L Cells
  • Mice
  • Peritoneal Dialysis / methods*

Substances

  • Dialysis Solutions
  • Glucose