Peptidic models for the binding of Pb(II), Bi(III) and Cd(II) to mononuclear thiolate binding sites

J Biol Inorg Chem. 2006 Oct;11(7):876-90. doi: 10.1007/s00775-006-0140-7. Epub 2006 Jul 20.

Abstract

Herein, we evaluate the binding of Pb(II) and Bi(III) to cysteine-substituted versions of the TRI peptides [AcG-(LKALEEK)4G-NH2] which have previously been shown to bind Hg(II) and Cd(II) in unusual geometries as compared with small-molecule thiol ligands in aqueous solutions. Studies of Pb(II) and Bi(III) with the peptides give rise to complexes consistent with the metal ions bound to three sulfur atoms with M-S distances of 2.63 and 2.54 A, respectively. Competition experiments between the metal ions Pb(II), Cd(II), Hg(II) and Bi(III) for the peptides show that Hg(II) has the highest affinity, owing to the initial formation of the extremely strong HgS2 bond. Cd(II) and Pb(II) have comparable binding affinities at pH > 8, while Bi(III) displays the weakest affinity, following the model, M(II) + (TRI LXC)3(3-) --> M(II)(TRI LXC)3(-). While the relevant equilibria for Hg(II) binding to the TRI peptides corresponds to a strong first step forming Hg(TRI LXC)2(HTRI LXC), followed by a single deprotonation to give Hg(TRI LXC)3(-), the binding of Cd(II) and Pb(II) is consistent with initial formation of M(II)(TRI LXC)(HTRI LXC)2 (+) at pH < 5 followed by a two-proton dissociation step (pK(a2)) yielding M(II)(TRI LXC)3(-). Pb(II)(TRI LXC)(HTRI LXC)2(+) converts to Pb(II)(TRI LXC)3(-) at slightly lower pH values than the corresponding Cd(II)-peptide complexes. In addition, Pb(II) displays a lower pK (a) of binding to the "d"-substituted peptide, (TRI L12C, pK(a2) = 12.0) compared with the "a"-substituted peptide, (TRI L16C, pK (a2) = 12.6), the reverse of the order seen for Hg(II) and Cd(II). Pb(II) also showed a stronger binding affinity for TRI L12C (K(bind) = 3.2 x 10(7) M(-1)) compared with that with TRI L16C (K(bind) = 1.2 x 10(7) M(-1)) at pH > 8.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Binding Sites
  • Bismuth / chemistry
  • Cadmium / chemistry
  • Circular Dichroism
  • Cysteine / chemistry*
  • Lead / chemistry
  • Metalloproteins / chemistry*
  • Metalloproteins / metabolism
  • Metals, Heavy / chemistry*
  • Metals, Heavy / metabolism
  • Models, Chemical*
  • Molecular Sequence Data
  • Peptides / chemistry*

Substances

  • Metalloproteins
  • Metals, Heavy
  • Peptides
  • Cadmium
  • Lead
  • Cysteine
  • Bismuth